
March 1999 The Delphi Magazine 67

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Task Bar Calculations

QI have a problem with the
Windows task bar. My appli-

cation has a status bar which
needs to sit at the bottom of the
screen. If the task bar is there it
hides my status bar. How do I find
out whether it is there, and its
position?

AAccording to the Windows
API help file, it seems that

SystemParametersInfo is the routine
for the job. Amongst many other
jobs, it can tell you the available
working area on your primary
Windows monitor. The working
area is the portion of the screen
not obscured by the task bar and
system tray. Note that if the task
bar has not been set to stay on top,
or is set to auto-hide, it is not con-
sidered to obscure any part of the
screen. To demonstrate the point,
you could put the code in Listing 1
into a form’s OnCreate event han-
dler and it would make the form
take up all the screen space left by
the task bar.

IDE Dissatisfaction

QThe Code Completion win-
dow in Delphi 3 and 4 seems

to be a specific fixed width. If it dis-
plays something that cannot be en-
tirely seen, holding the mouse over
it produces a tooltip that contains
the partially obscured text in its en-
tirety. However the tooltip only
lasts for about 2 seconds (which
doesn’t seem long enough).
Tooltips in Microsoft applications
have a tendency to be shown for
longer. Can this be changed in
Delphi?

AMicrosoft applications seem
to display their tooltips for 8

var
Rect: TRect;

...
SystemParametersInfo(
spi_GetWorkArea, 0, @Rect, 0);

with Rect do
SetBounds(Left, Top,
Right-Left, Bottom-Top);

➤ Listing 1

seconds. Delphi 1’s tooltips stayed
visible until you moved the mouse
away, but the Delphi 2 (and above)
default is 2.5 seconds. This is
dictated by the private
DefHintHidePause constant in the
implementation part of the Forms
unit. However, a Delphi application
can change this default by
assigning a different number of mil-
liseconds to the Application’s
HintHidePause property.

You can do the same thing for
Delphi itself (which, remember, is
a Delphi application) by installing a
unit (as if it contained a compo-
nent) that contains an assignment
to Application.HintHidePause. To
ensure Delphi compiles that code
in and executes it, the statement
should be contained either within
the unit’s initialisation section,
or inside the Register routine. So
either of the two units in Listings 2
and 3 would do the trick.

To install the unit once you have
made it, choose Component |
Install component..., then browse
and find the unit. Also choose
some package to install it into (the
default Delphi Users Components
package would suffice). Then press
OK and the package will recompile.
Delphi will load the package and
the statement will be executed (see
Figure 1). Case closed.

More On Property Editors

QI am trying to create a new
component like a TDBEdit,

but with two data sources and two
DataField properties.

When I create a property
DataField I can choose field names
in the Object Inspector, just as with
a Delphi-supplied data-aware con-
trol. However, when I create a
property DataField2 it doesn’t offer
a value list. Somehow there is a link

unit HintSetU;
interface
implementation
uses
Forms;

initialization
Application.HintHidePause := 8000

end.

➤ Listing 2

unit HntSetU2;
interface
procedure Register;
implementation
uses Forms;
procedure Register;
begin
Application.HintHidePause := 8000

end;
end.

➤ Listing 3

with the name DataField and
DataSource that gives a value list in
the Object Inspector. How does it
work?

AThe VCL has registered a
custom property editor to

cater for all data-aware controls.
All these components have a
property DataField. The custom
property editor has been regis-
tered for any String property
called DataField in any component
inherited from TComponent. Your
second property is not called
DataField and so does not get this
functionality. This means you will
have to provide it yourself.

The code used by the IDE can be
found in a source file called
DBREG.PAS in the LIB directory off
the root installation directory of

68 The Delphi Magazine Issue 43

➤ Figure 1Delphi 1 and 2, but it is not supplied
with Delphi 3 and 4 (which has this
unit contained within a design-time
package).

Listing 4 shows some code from
a unit DataFld2.Pas that imple-
ments and registers an appropri-
ate list-generating property editor,
with code ripped and modified
from the aforementioned Delphi-
supplied file. You can take this unit
and install it in exactly the same
way as you install a component in
any version of Delphi. This will
then make sure that any String
property called DataField2 in any
registered component class
directly or indirectly inherited
from TComponent uses this property
editor and gives you the desired
effect.

To understand how the property
editor works and get more informa-
tion on the subject, you should
refer back to previous articles.
Some examples include:

Under Construction: Property Edi-
tors by Bob Swart, Issue 6, p17;

Building TSmiley by Nick
Hodges, Issue 6, p49;

Delphi Clinic, Problem Property
Editors, Issue 20, p54;

Express Yourself by Chris McNeil,
Issue 23, p49;

Delphi Clinic, Alias Property
Editor, Issue 30, p54.

You can also check the extensive
comments in the DsgnIntf.Pas
Tools API source file supplied
either in Delphi’s SOURCE\VCL or
SOURCE\TOOLSAPI directory, dep-
ending on the Delphi version you
have. To summarise its functional-
ity and operation, when you select
a component, Delphi iterates
through the published properties
looking for the appropriate regis-
tered property editor class for
each one. Before the installation of
DataFld2, the relevant property
editor class would be
TStringProperty. DataFld2 super-
sedes this and registers TData
Field2Property instead.

So Delphi creates an instance of
TDataField2Property, and uses it to
get the current property value (via
the GetValue method). The value is
then displayed by the Object
Inspector along with all the other
property values. When you select

uses
DsgnIntf, TypInfo;

type
TDataField2Property = class(TStringProperty)
public
function GetAttributes: TPropertyAttributes; override;
procedure GetValueList(List: TStrings);
procedure GetValues(Proc: TGetStrProc); override;

end;
function TDataField2Property.GetAttributes: TPropertyAttributes;
begin
Result := [paValueList, paSortList, paMultiSelect];

end;
procedure TDataField2Property.GetValueList(List: TStrings);
var
Instance: TPersistent;
PropInfo: PPropInfo;
DataSource: TDataSource;

begin
Instance := GetComponent(0);
PropInfo := TypInfo.GetPropInfo(Instance.ClassInfo, 'DataSource');
if (PropInfo <> nil) and (PropInfo^.PropType^.Kind = tkClass) then begin
DataSource := TObject(GetOrdProp(Instance, PropInfo)) as TDataSource;
if (DataSource <> nil) and (DataSource.DataSet <> nil) then
DataSource.DataSet.GetFieldNames(List);

end;
end;
procedure TDataField2Property.GetValues(Proc: TGetStrProc);
var
I: Integer;
Values: TStrings;

begin
Values := TStringList.Create;
try
GetValueList(Values);
for I := 0 to Values.Count - 1 do Proc(Values[I]);

finally
Values.Free;

end;
end;
procedure Register;
begin
RegisterPropertyEditor(TypeInfo(String), TComponent,
'DataField2', TDataField2Property)

end;

the DataField2 prop-
erty, Delphi highlights
the property and
draws the drop down
arrow, having found
that the property edi-
tor’s GetAttributes
method returns a set
including paValueList.
Delphi also manufac-
tures a (hidden)
listbox to display
when the arrow is pressed.
Whether this listbox has its Sorted
property set to True or not is dic-
tated by the presence (or absence)
of paSortList in the GetAttributes
set.

When you eventually press the
arrow, Delphi calls the property
editor’s GetValuesmethod, passing
a reference to some appropriate
procedure. The idea is that
GetValues should iterate through
all the available values that need to
be displayed, calling this passed-in
procedure for each one, which is
passed the relevant value as its
parameter. The implementation of

➤ Listing 4

this passed-in procedure presum-
ably calls the Add method of the
Object Inspector’s hidden
listbox’s Items property.

GetValues manufactures a
TStrings object and passes it to
GetValueList to fill in. GetValueList
uses runtime type information
(RTTI) to verify that there is a pub-
lished DataSource property in the
class, and what its value is. If it is
non-nil then it checks whether this
data source has a data set, and if so
calls its GetFieldNames method
which takes a TStrings object.

March 1999 The Delphi Magazine 69

A throwaway sample compo-
nent TPretendDataAwareControl is
also supplied in a unit
PretendU.pas to show the prop-
erty editor working (Listing 5
shows the entire unit). Install this
component (it appears on the
Clinic page of the component pal-
ette by default), and place an
instance of it onto a form. You can
see that it has a DataSource prop-
erty, along with DataField and
DataField2 properties. Add a data
source and a table onto the form,
and set the properties of these
components as shown in Listing 6.

Now go to the DataField2 prop-
erty and observe the drop-down
arrow present on the Object
Inspector. Push the arrow button,
and a list of fields will appear
thanks to the code in the newly reg-
istered property editor (see Figure
2). The code in these units works in
Delphi 1, 2, 3 and 4.

Delphi 4 Disservice

QI need to dynamically
start/stop a driver service

under NT 4.0 from my app. Accord-
ing to the help file I need two ob-
jects: a TServiceApplication and
one or more TService objects. It
claims that the TService object(s)
will not work correctly with a ‘nor-
mal’ TApplication. It subsequently
states that you create such an app
by choosing File | New... and then
selecting a Service Application
from the Newpage. But no such item
exists!

I’m using Delphi 4 Professional
with Service Pack 1 on an NT 4.0
system. If there’s no way to do it

unit PretendU;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Mask, DBCtrls, DB;

type
TPretendDataAwareControl = class(TComponent)
private
FDataField, FDataField2: String;
FDataSource: TDataSource;

published
property DataField: String read FDataField write FDataField;
property DataField2: String read FDataField2 write FDataField2;
property DataSource: TDataSource read FDataSource write FDataSource;

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('Clinic', [TPretendDataAwareControl]);

end;
end.

➤ Above: Listing 5 ➤ Below: Listing 6

object Table1: TTable
DatabaseName = 'DBDEMOS'
TableName = 'CUSTOMER.DB'

end
object DataSource1: TDataSource
DataSet = Table1

end
object PretendDataAwareControl1: TPretendDataAwareControl
DataSource = DataSource1

end

with File | New..., then is there a
way to do it manually (with code or
changing the resource file or
something)?

AThe TService and TService
Application classes exist in

the Professional version in the
SVCMGR unit, but the IDE wizards do
not. This poses a problem. The
idea is to use the Application ob-
ject from the SVCMGR unit instead of
the one from the FORMS unit. This
new Application object is of type
TServiceApplication. It manages
various TService objects. In the IDE
a TService looks much like a data
module or web module, a form de-
signer capable of taking non-visual

components only, and with prop-
erties fit for the job of represent-
ing a Windows NT service.

Now whilst you could create
the TService objects under pro-
gram control, clearly the wizard
makes things a whole lot easier.

Here’s a message picked up
from the Usenet, posted some
while ago by a resourceful Delphi
4 user called Jeff Overcash that
tells you an easy way to deal with
the problem:

‘Pro has the TService and
TServiceApplication classes
included. The Developer’s Guide,
chapter 3, has the only documen-
tation on them. Only the Starting
Wizards were left out. I wrote a Pro
version of the Wizards a month
ago. You can find it at
www.jgsoftware.com/nt.htm’

Thanks go to John Atkins who
posted this message on CIX last
August.

Missing DBGrid Events

QConsider a program with a
TDBGrid component. During

execution, any column of the
DBGrid can be resized by clicking
and dragging the mouse at the
edge of any fixed cell (the very top
row). I need to know when this
happens. Is there a window mes-
sage that is sent to the owner form
during this action?

AWell, yes, sort of. To per-
form the resize operation,

the user clicks the left mouse but-
ton down, moves the mouse and
then releases the mouse button.
There are dedicated messages for
all these actions. However, clearly,
the resize only happens when the
mouse is clicked on (or very near)

➤ Figure 2

70 The Delphi Magazine Issue 43

the vertical lines separating the
column header cells. Rather than
painstakingly calculating whether
the mouse is clicked in an appro-
priate place we ought to take
advantage of the fact that the grid
already does that. So long as we
can identify what the grid does to
indicate a resize is in progress, we
should be able to get the desired
effect.

It seems that TCustomGrid, an
ancestor of TDBGrid and also of
TStringGrid, has a protected data
field called FGridState that is given
a value of gsColSizing when a
column resize operation is taking
place. With this information, we
can write some routines that will
be triggered by the arrival of the
appropriate mouse-related Win-
dows messages, and proceed from
there. Instead of writing Windows
message handling methods for
wm_LButtonDown, wm_MouseMove and
wm_LButtonUp, we will instead over-
ride some virtual TControl meth-
ods: MouseDown, MouseMove and
MouseUp.

I have written a derivative of
TDBGrid (in NewDBGrid.Pas) that
has extra code to trigger two new

events, OnResizing and OnResized.
These events give you the TColumn
object that is being resized, and
the current width that they are
being resized to. Since Delphi 1 did
not support TColumn objects, the
implication is that this component
will not work in Delphi 1. However,
the offered solution is more
restrictive than that.

You might notice that you can
click exactly on a title cell division
to facilitate resizing, but the grid is
also quite flexible in allowing you
some slack to the left and right. It
seems that you can click about 3
pixels to the left or right of this divi-
sion, and the grid still works out
what you are doing. As you move
your mouse around the title cells,
the cursor will indicate if a resize
operation is allowed. If you resize a
column to a width of 2 pixels, the
logic is not impaired at all.

Some dedicated routines are
employed inside the component to
enable this. In order to ensure that
these new events are passed infor-
mation regarding the correct
column, the new component
should take advantage of these
routines whenever the mouse is
clicked at the beginning, and
released at the end, of a resize

operation. The problem here is
these routines were private until
Delphi 4. Because of extra func-
tionality that was added by Inprise
R&D for Delphi 4, they have now
become protected methods.

So in fact, to make my life easy
(because these routines are rather
involved in their implementation),
my solution currently only works
in Delphi 4. The class that offers
the required functionality looks
like Listing 7.

Notice that when the mouse is
clicked on the grid MouseDown lets
the TDBGrid code do what it nor-
mally does, potentially changing
the internal FGridState to
gsColSizing. If this happens, we
need to identify which column is
being resized, and (now available)
CalcDrawInfo and CalcSizingState
are called to pull out the app-
ropriate column index number.

The grid can optionally have an
indicator column, indicating
which is the current record, and
whether the underlying dataset is
in browse, edit or insert mode.
This is dictated by the presence
(or absence) of dgIndicator in the
Options set property. If an indica-
tor column exists, the column
index we found will be one too

TResizeEvent = procedure(Sender: TCustomDBGrid; Column:
TColumn; Width: Cardinal) of object;

TNewDBGrid = class(TDBGrid)
private
//Column being resized
FColumn: TColumn;
//Horizontal position of mouse when resize started
FOldX: Integer;
//Private fields for event handlers
FOnResized,
FOnResizing: TResizeEvent;

protected
//Generic resize event code
procedure DoResize(NewX: Integer; ResizeEvent:
TResizeEvent); virtual;

//Routines to trap resize operations
procedure MouseDown(Button: TMouseButton; Shift:
TShiftState; X, Y: Integer); override;

procedure MouseMove(Shift: TShiftState; X, Y: Integer);
override;

procedure MouseUp(Button: TMouseButton; Shift:
TShiftState; X, Y: Integer); override;

published
//New events
property OnResizing: TResizeEvent read FOnResizing
write FOnResizing;

property OnResized: TResizeEvent read FOnResized
write FOnResized;

end;
procedure TNewDBGrid.DoResize(NewX: Integer;
ResizeEvent: TResizeEvent);

var Width: Integer;
begin
if (FGridState = gsColSizing) and Assigned(FColumn) and
Assigned(ResizeEvent) then begin
//Calculate new column width
Width := FColumn.Width + NewX - FOldX;
//Deal with silly resize requests
if Width <= 1 then
Width := FColumn.Width;

//Trigger specified event handler
ResizeEvent(Self, FColumn, Width)

end

end;
procedure TNewDBGrid.MouseDown(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

var
ColumnIndex: Integer;
Pos, Ofs: Integer;
State: TGridState;
DrawInfo: TGridDrawInfo;

begin
inherited;
if FGridState = gsColSizing then begin
//Set up TGridDrawInfo record for next statement
CalcDrawInfo(DrawInfo);
//Ask grid which cell is being resized
CalcSizingState(X, Y, State, ColumnIndex, Pos, Ofs,
DrawInfo);

//Take indicator column into account
ColumnIndex := RawToDataColumn(ColumnIndex);
if ColumnIndex >= 0 then
FColumn := Columns[ColumnIndex];

FOldX := X
end else
FColumn := nil

end;
procedure TNewDBGrid.MouseMove(
Shift: TShiftState; X, Y: Integer);

begin
inherited;
//Possible resizing occurring
DoResize(X, FOnResizing)

end;
procedure TNewDBGrid.MouseUp(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
//Possible resize completed
DoResize(X, FOnResized);
//Finished resizing the column, so clear it
FColumn := nil;
inherited;

end;

➤ Listing 7

72 The Delphi Magazine Issue 43

large (with respect to the TColumn
objects), so we call RawTo
DataColumn to subtract one if this is
necessary.

Assuming we get a field-related
column, we can then use the Col-
umns property to get the TColumn in
question. Additionally, the current
X co-ordinate is stored so that we
can later identify how far the user
is growing or shrinking the column.

As the mouse is moved, and as
the mouse button is released, a
resize operation may be happening
or may be completed. Since the
code to deal with these situations
is similar, it is wrapped up in a
common DoResize method. This
checks that the grid is in a resizing
state, that a column is indeed being
resized and that the appropriate
event handler exists. Assuming all
these criteria are met, the new
column size is calculated and the
event handler is triggered.

Some sample event handlers
might look like those in Listing 8.
The sample project on the disk,
NewGridTest.Dpr, uses this com-
ponent (which will need installing)
and implements these event han-
dlers. It also has a couple of
checkboxes that allow you to
exclude and include both an indi-
cator column and vertical column
lines, to ensure the code works.

One Step ActiveX

QDelphi 4’s help on the issue
of making ActiveX controls

does not mention the need of a
component to originate from a
specific class (such as
TCustomControl). I read in Tom
Swan's Delphi 4 Bible that ‘any
Delphi component can easily be

converted into an ActiveX control.’
This was good news to me, as this
suggests non-visual components
as well as visual components. What
needs to be done so that non-visual
VCL components will appear in the
‘eligible to change to ActiveX’ list?

ATo manufacture an ActiveX
control in Delphi 4, you

choose File | New... | ActiveX |
ActiveX Control. This gives the dia-
log shown in Figure 3 which is used
to generate a VCL class that repre-
sents an ActiveX. The code made
use of to make the ActiveX work is
called the DAX (Delphi ActiveX)
Framework.

The VCL Class Name: combobox
in Figure 3 offers all the classes that
Delphi 4 thinks are acceptable for
turning into ActiveX controls. This
includes most of the currently
installed components that are
inherited from TWinControl,
although some are excluded. The
exclusions primarily relate to
those which have a reliance on
other components. This excludes a
whole raft of components such as
data-aware components (which
link to data source components),
and QuickReport components.

TPageControl is also
missing. This is due to
its requirement to
accept VCL compo-
nents as child compo-
nents. If you turned a
TPageControl into an
ActiveX, other devel-
opers using other
development tools
would wish to add
non-VCL objects to it,
and this would not

procedure TForm1.DBGrid1Resizing(Sender: TCustomDBGrid; Column: TColumn;
Width: Cardinal);

begin
if Assigned(Column) then
Caption := Format('Field %s is being resized to %d pixels',
[Column.FieldName, Width])

end;
procedure TForm1.DBGrid1Resized(Sender: TCustomDBGrid; Column: TColumn;
Width: Cardinal);

begin
if Assigned(Column) then
Caption := Format('Field %s has been resized to %d pixels',
[Column.FieldName, Width]);

//Give clear indication that the resize has finished
Color := Random($1000000)

end;

work. Delphi components that
their authors thought should not
be used for ActiveX controls are
passed to RegisterNonActiveX
during their registration.

However, the exclusion rule is
not exclusive. For example,
TUpDown is in the list. The VCL
TUpDown class has an Associate
property that allows you to con-
nect the TUpDown to another win-
dowed control. When Delphi turns
it into ActiveX, the Associate prop-
erty is not surfaced.

So, as far as I can see, the Delphi
4 book seems to be incorrect in its
assertion. To try and check, I tried
setting up an ActiveX control man-
ually, to make an ActiveX for a
TTimer. I started by making an
ActiveX for a normal control, and
then went through substituting the
VCL class name with TTimer. Unfor-
tunately I failed, due to the require-
ments for a TWinControl. One
statement of the generated source
typecasts the underlying VCL com-
ponent instance into a
TWinControl, which fails with a
TTimer.

➤ Listing 8

➤ Figure 3

	Task Bar Calculations
	IDE Dissatisfaction
	More On Property Editors
	Delphi 4 Disservice
	Missing DBGrid Events
	One Step ActiveX

